

Impact of Artificial Intelligence on Healthcare and Society: Insights from Japanese Medical Education

Noriyasu Homma

Tohoku University Graduate School of Medicine

homma@med.tohoku.ac.jp

http://www.rii.med.tohoku.ac.jp/

Disclosure

The following studies were supported in part by research grants from Varian Medical Systems, Palo Alto, California and from RISE Corp., Japan.

Subscribe >

https://www.tohoku.ac.jp/en/

6

International Affairs

Current Students

Faculty/Staff Alumni

כם

3

Established in 1907

Students

• The 1st University for International Research Excellence (2024)

COVID-19 Information and

Preventive Measures

TOHOKU UNIVERSITY

CREATING GLOBAL EXCELLENCE

Subscribe to our Newsletter

Sign up and receive newsletters straight to your inbox!

тоноки UNIVERSITY

Contents

Impact: Medical image diagnosis and computer (AI) support

- □ The Impact of deep learning: Radiologists will be fired?
- Example of breast cancer
- Will deep learning surpass human knowledge and skills: Will it be <u>useful for medicine</u> (in clinic)?

Challenges and educational solutions


```
Sebastian Thrun 🖂
```

Nature **542**, 115–118(2017) Cite this article

61k Accesses | 2825 Citations | 2873 Altmetric | Metrics

A Corrigendum to this article was published on 29 June 2017

Another example ■ https://jamanetwork.com/journals/jama/fullarticle/2588763

Original Investigation | Innovations in Health Care Delivery

December 13, 2016

<u>ل</u>

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD¹; Lily Peng, MD, PhD¹; Marc Coram, PhD¹; et al

1975: 210,000 patients 1985: 330,000 1995: 480,000 660,000 (320,000 died) 2005: 2015: 800,000 pneumonia 850.000 2020: 400 肺炎 350 tuberculosis 300 胃腸炎 250 結核 200 脳血管疾患 150 Ō

766

心疾患

Cancer

恶性新生物

噫の 事故

1969

1964

974

979

984 989

959

954

1939

929 934 944 949

919

92

914

Mammographic screening

Typical findings in mammogram

Micro-calcification (MCC) Mass Architectural distortion (AD)

Detection rate by medical interns [Hatanaka et al., 2002]

findings	MCC	Mass	AD
rate	94 %	85 %	60 %

Comparison: poor performance

findings	MCC	Mass	AD		
Interns	94 %	85 %	60 %		
Computer	95 %	~ 70 %	~ 50 %		

Before deep learning: Not good enough!!

What's the diagnostic mechanism of AI?

Rough introduction to mathematical background

Feature extraction and classification

Image (pattern) recognition

manual design

• manual design or machine learning

Impact of Artificial Intelligence on Healthcare and Society

Breakthrough

Deep learning

Congratulations to the pioneers

2018 Turing Award https://awards.acm.org/about/2018-turing Yoshua Bengio, Geoffrey Hinton, Yann LeCun

STATIC AND DYNAMIC NEURAL NETWORKS

From Fundamentals to Advanced Theory

日経「AIのゴッドファーザー」雌伏の30年より

https://www.amazon.co.jp/Static-Dynamic-Neural-Networks-Fundamentals/dp/0471219487

@MacKay Memorial Hospital in Taipei

Application: Pattern recognition Computer-aided diagnosis (CAD)

Breakthrough: Deep learning

Artificial Neural Networks

入力画像

- · feature extraction can be done by training
- \cdot automatic design can achieve very high performance

Results of mass and normal classification

Accuracy: **85.4**%

True Positive: **89.9**% False Positive: **19.2**%

< 1.0 / image

~2015 (10 years ago)

RESULTS

0.9951[NOR]

0.9905[NOR]

0.9888[NOR]

0.9827[NOR]

0.9756[NOR]

0.9599[NOR]

0.9365[NOR]

The MASS classification with probability ranking

		,	0					,	0	
0	•	-	-			14				
1.0000[MAS]_60	1.0000[MAS]_59	1.0000[MAS]_58	1.0000[MAS]_56	1.0000[MAS]_55	1.0000[MAS]_54	0.9993[NOR]	0.9988[NOR]	0.9983[NOR]	0.9972[NOR]	0.9966[NOR]
1.0000[MAS]_50	1.0000[MAS]_49	1.0000[MAS]_46	1.0000[MAS]_45	1.0000[MAS]_43	1.0000[MAS]_42	0.9949[NOR]	0.9942[NOR]	0.9933[NOR]	0.9932[NOR]	0.9916[NOR]
0	0	1					6			
1.0000[MAS]_40	1.0000[MAS]_39	1.0000[MAS]_35	1.0000[MAS]_34	1.0000[MAS]_30	1.0000[MAS]_25	0.9903[NOR]	0.9897[NOR]	0.9896[NOR]	0.9890[NOR]	0.9889[NOR]
1.0000[MAS]_24	1.0000[MAS]_19	1.0000[MAS]_18	1.0000[MAS]_10	1.0000[MAS]_9	1.0000[MAS]_8	0.9872[NOR]	0.9860[NOR]	0.9853[NOR]	0.9834[NOR]	0.9830[NOR]
	1 0000[145] 3	1.0000[1407]								
1.0000[MAS]_7	1.0000[MA5]_3	1.0000[MAS]	0.9999[NOK]_69	0.9999[NOK]_68	0.9999[1004]_02	0.9806[NOK]	0.9788[NOR]	0.9786[NOK]	0.9770[NOK]	0.9759[NOK]
0.9999[NOR]	0.9999[MAS]_44	0.9999[MAS]_38	0.9999[MAS]_33	0.9999[MAS]_31	0.9999[MAS]_27	0.9731[NOR]	0.9711[NOR]	0.9674[NOR]	0.9657[NOR]	0.9647[NOR]
the second							Age			
0.9999[MAS]_22	0.9999[MAS]_17	0.9999[MAS]_15	0.9999[MAS]_14	0.9999[MAS]	0.9998[NOR]	0.9555[NOR]	0.9494[NOR]	0.9447[NOR]	0.9427[NOR]	0.9410[NOR]
20.2024				(\mathcal{O})	iachay ivien	nonal nospital	In raiper			

The NORMAL classification with probability ranking

L		
L		
	27	

Will deep learning surpass human knowledge and skills?

Is artificial intelligence the enemy of humanity?

@MacKay Memorial Hospital in Taipei

ct. 26, 2024

@MacKay Memorial Hospital in Taipei

οκι

Result

If the doctors and CAD predictions are the same

\rightarrow Doctor's confidence was increased

Reader	malignancy	Reader	malignancy
Doctor	67%	Doctor	43%
CAD	100%	CAD	0%
Doctor + CAD	88%	Doctor + CAD	6.7%

If the doctors and CAD predictions are different

 \rightarrow Doctors follow to CAD

Reader	malignancy		Reader	malignancy
Doctor	29%		Doctor	63%
CAD	100%		CAD	0%
Doctor + CAD	57%	Strate and Street	Doctor + CAD	26%

Result (2)

Diagnosis ability was improved by using the CAD

Contents

- Impact: Medical image diagnosis and computer (AI) support
- <u>Challenges</u> and educational solutions for clinical applications
 - Differences from familiar techniques (for clinicians)
 - What patients want: accountability
 - Educational solution

Impact of Artificial Intelligence on Healthcare and Society

What's wrong? - Reality

https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-rea

-	6	

CÔ

MIT Technology Review

Ū

Topics Magaz

WIKIMEDIA COMMONS

Artificial intelligence / Machine learning

Google's medical Al was super accurate in a lab. Real life was a different story.

If AI is really going to make a difference to patients we need to know how it works when real humans get their hands on it, in real situations.

Did you know?

C 🔒 bmj.com/content/368/bmj.m689

thebmj covid-19 Research - Education - News & Views - Campaigns - Jobs -

Research

 \rightarrow

Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies

BMJ 2020 ; 368 doi: https://doi.org/10.1136/bmj.m689 (Published 25 March 2020) Cite this as: *BMJ* 2020;368:m689

Linked Editorial

Artificial intelligence versus clinicians

Article

Related content

Metrics

Responses

Peer review

COVID-19 pandemic

ARTICLES https://doi.org/10.1038/s42256-021-00338-7 machine intelligence

AI for radiographic COVID-19 detection selects shortcuts over signal

Alex J. DeGrave^{[0],2,3}, Joseph E

Artificial intelligence (AI) researchers chest radiographs. However, the robus AI, we demonstrate that recent deep le rather than medical pathology, creatinew hospitals. We observe that the ap AI to learn these spurious 'shortcuts'. the detection of COVID-19 in compute reveals a far-reaching problem in medificient to ensure AI systems rely on me not impair performance in new hospit clinical deployment of machine-learnin

he prospect of applying artificial

detection of COVID-19 in chest radiographs has generated interest from machine learning (ML) researchers and radiologists alike, given its potential to (1) help guide management in resource-limited settings that lack sufficient numbers of the

Negative image

Important pixels

Check for updates

image features using state-of-the-art explainable artificial intelligence (AI) techniques, including both saliency maps and generative adversarial networks (GANs)¹⁶⁻¹⁹. These enquiries reveal how seemingly high-performance AI systems may derive the majority of their Impact of Artificial Intelligence on Healthcare and Society

Deep learning model accurately diagnosed COVID-19 infection even in images where the medically significant region was removed.

Image processing techniques to extract or remove specific regions such as the lungs from the original images. We introduced two new datasets: one with intra-source balance and the other with intra-source imbalance that can be a hidden risk of AI training.

Impact of Artificial Intelligence on Healthcare and Society

ROC curves: Qata-COV19(Intrasource imbalanced)

Oct. 26, 2024

High but unreliable performance

Test Performance	AUC
Original	0.9983
Lung boxed out	0.9980
Lung framed	0.9953
Lung removed	0.9995
Lung isolated	0.9963

@MacKay Memorial Hospital in Taipei

Improvement: data quality

- Reveal clear evidence that
 - Intra-source balance is vital for training data
 - Deep learning model trained by intra-source imbalanced data might classify images based on the features characterizing data sources

Impact of Artificial Intelligence on Healthcare and Society

Where did AI focus on?

46 τομοκι

The regions focused by the two models in diagnosing COVID-19 infection: (A) The model trained on the intrinsically imbalanced dataset is directing attention to text 'D' (improper area). (B) The model trained on the intrinsically balanced dataset is appropriately focusing on the medically relevant lung region, demonstrating higher reliability in the basis of diagnosis.

ct. 26, 2024

@MacKay Memorial Hospital in Taipei

Guidelines for clinical Al-trials

nature.com/articles/s41591-020-1034-x

nature medicine

 $\leftarrow \rightarrow C$

Explore our content V Journal information V

nature > nature medicine > consensus statements > article

Consensus Statement | Open Access | Published: 09 September 2020

Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension

Xiaoxuan Liu, Samantha Cruz Rivera, David Moher, Melanie J. Calvert, Alastair K. Denniston 🗠 & The SPIRIT-AI and CONSORT-AI Working Group

CCC

Patient apprehensions*

- 1. Participants were excited about healthcare AI but wanted assurances about safety
- 2. Patients expect their clinicians to ensure AI safety
- 3. Preservation of patient choice and autonomy
- Concerns about healthcare costs and insurance coverage
- 5. Ensuring data integrity
- 6. Risks of technology-dependent systems

*J. Richardson et al., Patient apprehensions about the use of artificial intelligence in healthcare, *digital medicine*, 140 (Sept. 2021), https://www.nature.com/articles/s41746-021-00509-1

The Essential Requirements for AI in Medicine

My experience

- * Increased work speed / Reduced labor effort
 - might be necessary but <u>not enough</u>
 - can be adequately achieved with existing methods without AI
 - (by reviewing of rules, changing mindset, and improving culture)

required no technique
delivered dramatic results However, these initiatives are often not carried out. Why? People do not accept changes in values and behavior.

- * Encouraging a reassessment of existing values
 - bring about behavioral changes in people

Aggregation of Insights from Various Experts

<u>Team Building</u>

- * Mere talent pool \longrightarrow Innovation
- * For seamless exchange and creation of insights
 - common languages shared culture
 - <u>leaders</u> with understanding in each respective field

AI Lab / Clinical AI

AI Lab for Innovation, Clinical AI for Education

Al Lab - Center for Medical Al Projects

Leading for Joint Research and Development

* Support Mathematics and Design Across Departments

Number of students

As of July 1^{st} , 2024

type	universitv	First batch (Enrolled in 2023)		Second batch (Enrolled in 2022)		Third batch (Enrolled in 2023)		Forth batch (Enrolled in 2024)	
		Reg.	KPI	Reg.	KPI	Reg.	KPI	Reg.	KPI
Regular (4 years)	Tohoku	9	5	7	5	5	5	6	5
	Hokkaido	8	2	17	4	14	4	13	4
	Okayama	7	3	16	3	17	3	12	3
Intensive (1 year)	Tohoku	55	7	223	7	560	7	343	7
	Hokkaido	33	6	100	6	210	6	227	6
	Okayama	54	6	210	6	290	6	197	6

Academic Output Until June 2023 2% 10% 18% 26% 34% Projects 152 100 All presentation Paper submission 28 30 Our presentations Research funding 16 2021 2022 2023 2024 2020 Number of presentations at the Annual Meeting of Japanese Association for Medical Al Career Path Move to At university

- advanced research and development
- medical data management
- education

- other research institutes
- startup companies
- administrative agencies

The next generation of medical digital transformation

Clinical AI – Activities of Trainees

AI Lab / Clinical AI - International Exchange

Mutual Site Visit

* Finland (Oulu) - 2019, 2023

* India (Bangalore) - 2019,

ExCLAIM (Experience in Creation for Leaders of AI in Medicine)

- * Target: postgraduates / industry professionals
- * Method: participate in the activities as a member of the AI Lab
- * Objective: talent development for Medical AI Leaders

Summary

Impact: Medical image diagnosis and computer (AI) support

Challenges and educational solutions for clinical applications

東北大学大学院 医学系研究科 医用画像工学分野 医工学研究科 知能システム医工学分野

新着情報 News 研究内容 Research

Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine Intelligent Biamedical Systems Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University

> *医療機器の知能* 持続可能な健康

Intelligent Medical Systems Crea and Healthy Longevity S

